Ventral Medial Nucleus Of Thalamus


Large and very large injections in VPL produced marked increases in labeling in lamina I, associated first with spread into VPI and next into the posterior part of the ventral medial nucleus (VMpo), and abundant labeling in lamina VII, associated with spread into the ventral lateral (VL) nucleus.  

Thalamic distribution of label from forelimb injections included ventral portions of the ventral posterior lateral subnucleus (VPL), dorsolateral Po, the ventral lateral nucleus, and the ventral medial nucleus and neighboring intralaminar nuclei..  

The respective roles of the ventral posterior complex (VP) and of the more recently described VMpo (posterior part of the ventral medial nucleus) as thalamic relays for pain and temperature pathways have recently been the subject of controversy.  

Terminations consistently occurred in two main locations: a distinguishable portion of posterolateral thalamus identified cytoarchitectonically as the posterior part of the ventral medial nucleus (VMpo) and a portion of posteromedial thalamus designated as the ventral caudal part of the medial dorsal nucleus (MDvc).  

In all cases, regardless of the level of the injections, terminal fibers were consistently distributed in three main locations: the submedial nucleus; the ventral aspect of the basal ventral medial nucleus and ventral posterior nuclei; and, the dorsomedial aspect of the ventral posterior medial nucleus.  

The presence of sites where stimulation evoked taste or where receptive and projected fields were located on the pharynx were used as landmarks of a plane located as medial as the posterior part of the ventral medial nucleus (VMpo).  

We used the electron microscope to examine lamina I trigemino- and spinothalamic (TSTT) terminations in the posterior part of the ventral medial nucleus (VMpo) of the macaque thalamus.  

Further, thermoreceptive cells projected medially within vVP (including the basal ventral medial nucleus), while nociceptive cells projected both medially and more laterally, and the ascending axons of thermoreceptive cells were concentrated in the medial mesencephalon, while the axons of nociceptive cells ascended in the lateral mesencephalon. These results support evidence indicating that the ventral aspect of the basal ventral medial nucleus is important for thermosensory behavior in cats, consistent with the view that this region is a primordial homologue of the posterior ventral medial nucleus in primates..  

Previous studies in the macaque monkey have identified a thalamic nucleus, the posterior portion of the ventral medial nucleus (VMpo), as a dedicated lamina I spinothalamocortical relay for pain and temperature sensation.  

Labeled thalamocortical neurons overlapped cerebellar inputs in the VLd and VApc and overlapped pallidal inputs in the VLa and the ventral medial nucleus.  

They were aimed at one or more of the three main target areas of thermoreceptive-specific lamina I spinothalamic neurons [ i.e., the nucleus submedius, the dorsomedial aspect of the ventral posterior medial nucleus, and the ventral aspect of the basal ventral medial nucleus (vVMb)], following microelectrode mapping of somatosensory thalamus.  

Overlapping thalamic territories between the thalamostriatal neurones projecting to areas of the caudate nucleus and the nigrothalamic connections were observed in the rostral nuclei of the central thalamic group (ventral anterior nucleus, ventral anterior-ventral lateral complex and ventral medial nucleus) and, more restricted, in the rostral (rhomboid, paracentral, ventral lateral, dorsal mediodorsal nuclei) and caudal intralaminar nuclei (centromedian-parafascicular complex).  

Overlapping thalamic territories between the thalamostriatal neurones projecting to areas of the caudate nucleus and the nigrothalamic connections were observed in the rostral nuclei of the central thalamic group (ventral anterior nucleus, ventral anterior-ventral lateral complex and ventral medial nucleus) and, more restricted, in the rostral (rhomboid, paracentral, ventral lateral, dorsal mediodorsal nuclei) and caudal intralaminar nuclei (centromedian-parafascicular complex).  

The aim of the present study was to confirm the prediction, based on recent studies in cat and monkey, that there must be a prominent spinothalamic (STT) projection of cooling-specific spinal cord lamina I neurons to the posterior part of the ventral medial nucleus (VMpo) of the monkey thalamus.  

Prominent expression was observed in the thalamus, particularly in the posterior part of the ventral medial nucleus, a site responsive to pain and cold stress.  

These subfields consist of the rostral pole of the mediodorsal nucleus with the exception of its central segment and a region of the ventral medial nucleus, medial to the mammillothalamic tract.  

To address this, rats received iontophoretic deposits of the anterograde tracer Phaseolus vulgaris leucoagglutinin in the subthalamic nucleus, injections of the anterograde tracer biocytin in the neostriatum and injections of the retrograde tracer horseradish peroxidase conjugated to wheat-germ agglutinin in the ventral medial nucleus of the thalamus.  

The results indicate that: (1) the IVA receives a wide variety of telencephalic inputs, not only from visual, sensorimotor, auditory, limbic and association cortical areas, and from the claustrum, amygdala and basal nucleus of Meynert, as well, but also from the diencephalic projections arising mainly from the lateralis medialis-suprage niculate nuclear complex (LM-Sg) and the ventral medial nucleus (VM).  

In neonates, the cell populations retrogradely labeled from each cortical injection overlapped in a medial thalamic region that included the midline nuclei and the medial part of the mediodorsal nucleus, ventral medial nucleus, and nucleus gelatinosus. This population consisted of cell clusters in the dorsal part of the central lateral nucleus and in the lateral part of the ventral medial nucleus; scattered cells were also observed throughout other nuclei.  

However, some preferential distribution of the contralateral projections to the ventral medial nucleus appears to exist. The ventral medial nucleus receives bilateral input from the fastigial nucleus which originates from about one quarter of the thalamus projecting neurons in this nucleus. Of all other cerebellar nuclei only the dentate nucleus projects to the ventral medial nucleus and this projection is exclusively contralateral..  

After HRP injections into the ventral medial nucleus (VM), major labeled neurons were observed in the gyrus proreus, area 6a beta (mainly in the medial bank of the presylvian sulcus), and EPN ipsilaterally, and in the medial pretectal nucleus and substantia nigra bilaterally.  

The ventral medial nucleus of the thalamus (VM) has been shown in rats and cats to constitute a common target for nigro- and cerebello-thalamic pathways.  

Within the rostral ventral tier nuclei fastigiothalamic terminations were localized in the medial parts of the ventral medial and ventral lateral nuclei, whereas dentatothalamic projections were concentrated in the lateral parts of the ventral medial nucleus and the medial half of the ventral lateral nucleus. Terminations from the posterior interpositus nucleus were observed ventrally and laterally within the caudal two-thirds of the ventral medial nucleus and throughout the ventral lateral nucleus, where they were densest in the lateral part of its lateral wing and within the central part of its cap.  

Some labeled cells were found in the ventral medial nucleus, and a lesser number in the submedial nucleus.  

An accumulation of radioactivity was found in the ventral medial nucleus and in the ventromedial part of the ventral anterior nucleus. The present findings indicate that the ventral medial nucleus is the principal site of termination of nigrothalamic projections in the cat..  


-
[ View All ]